GraphDB Migration Service: The 10-Step Pathway from Data to Insights

May 29, 2017 4 mins. read Milena Yankova

GraphDB Migration Service PlanDo you know what all your organization’s data can tell you? Do you want to be able to analyze it by looking into the relationships between its concepts?

If you’re pondering this questions, we at Ontotext have the answers.

Our semantic graph database GraphDB helps you interlink your enterprise data and build an integrated data view for querying and analytics, so you can turn all the information in it into knowledge and wisdom.

The semantic graph database focuses on the relationships between concepts and is able to infer new knowledge out of existing information. GraphDB performs semantic inferencing at scale and handles massive loads, queries, and inferencing in real time. It is a powerful tool to use in relationship-centered analytics and knowledge discovery.

However, our offer is not limited to just selling you the database.

Explore Ontotext's GraphDB Migration Service!

 

GraphDB helps interlink and build an integrated dataWe also go the extra mile in accompanying you on an easy 10-step pathway to discover the knowledge hidden in your organization’s data.

Welcome to our GraphDB Migration Service – the A-Z service that helps you prepare for migrating your data to GraphDB, walks you through the setup, and monitors performance. We make the effort to understand your specific business case and assist you in solving your data challenges. Our dedicated technical team helps you all the way through the process and we also provide professional account management, clear-cut KPIs, and continuous support.

Let’s walk you through the 10-step migration process so you can start getting insights from your data with GraphDB.

  1. Validate Data Modeling: Analyzing the data modeling done and validating if it is optimal.
  2. Profile Slow Queries: Analyzing slow running client queries for potential optimizations.
  3. Export Data: Exporting the data from the previous database and preparing it for import in GraphDB.
  4. Setup GraphDB: Assisting in the selection of suitable infrastructure for optimal performance. Installing GraphDB on an infrastructure of choice.
  5. Optimize Setup: Optimizing GraphDB set up for the expected client use.
  6. Import Data: Importing previously exported data into the new GraphDB instance.
  7.  Analyze ‘Slow Queries’: Analyzing the previously slow running queries on the new GraphDB instance.
  8. Optimize Queries for Performance: Rewriting the slow running queries to take advantage of the strengths of GraphDB’s query optimizer.
  9. Monitor Repository Performance for a Month: Monitoring GraphDB performance, tweaking the product and the queries for optimal performance with the new setup and potential new user behavior and workflow.
  10. Free Support for a Month: Tackling all issues and incidents for a month to make sure the setup is stable and performant.

Speaking of database performance, we now have the updated GraphDB Performance Benchmark Results, presenting some well-known benchmarks and explaining how they should be interpreted in the context of common RDF use cases.

The LDBC Semantic Publishing Benchmark (SPB) is a popular benchmark that simulates the database load commonly faced by media or publishing organizations. The generated dataset is based on BBC’s Dynamic Semantic Publishing and contains both reference data and content meta-data.

The Berlin SPARQL Benchmark (BSBM) is similar to LDBC SPB in combining read queries with frequent updates. However, it covers a more generic use case, generally defined as eCommerce, and describes relations between products and producers, products and offers, offers and vendors, products and reviews.

Our engineering team works tirelessly to achieve the best possible database loading and query answering speed. Don’t hesitate to contact us at graphdb-support@ontotext.com if you don’t see your use case on our performance benchmark page. We’ll do our best to publish it.

Now that you have the performance benchmarks to look at, pick your preferred GraphDB version for your specific use case. We’ll walk you through the migration process to help you get started with analyzing your data and turning it into insights.

Ready to get to the next level of advanced analytics by migration to Ontotext GraphDB Migration Service?

Explore Now

Article's content

A bright lady with a PhD in Computer Science, Milena's path started in the role of a developer, passed through project and quickly led her to product management. For her a constant source of miracles is how technology supports and alters our behaviour, engagement and social connections.

Linked Data Solutions for Empowering Analytics in Fintech

Read about how FinTech can use the power of Linked Data to put data into context and expose various links between these concepts.

Semantic Technology: Creating Smarter Content for Publishers

Learn how semantic technology helps publishers create better content publishing workflows and improved content consumption for readers.

The 5 Key Drivers Of Why Graph Databases Are Gaining Popularity

Read about the 5 key characteristics of graph databases – speed, meaning, answers, relationships, and transformation.

GraphDB Migration Service: The 10-Step Pathway from Data to Insights

Welcome to our GraphDB Migration Service that helps you prepare for migrating your data to GraphDB, walks you through the setup and monitors performance.

Fighting Fake News: Ontotext’s Role in EU-Funded Pheme Project

Read about the EU-funded project PHEME aiming to create a computational framework for automatic discovery and verification of information at scale and fast.

Semantic Technology: The Future of Independent Investment Research

Learn how independent research firms use cutting-edge technologies to add value to research pieces and monetize the content they offer.

Top 5 Semantic Technology Trends to Look for in 2017

Read about the top 5 trends in which Semantic Technology enables enterprises to make sense of their data and fine-tune their offerings to customers.

Ontotext’s 2016: Our Top 7 Webinars Of The Year

Data shows that in 2016 we had a total of 22 webinars that attracted over 7 000 people – here are the 7 best webinars!

Ontotext’s 2016: What Did You Liked The Most On The Blog

Nearly 10 000 people read our blog in 2016 and the following 5 posts gathered most interest.

Linked Data in Regtech: Boosting Compliance and Performance

Learn how regulatory technology, coupled with semantic technology, can help enterprises and financial institutions reduce exposure to risk.

How Data Integration Joined the Music Hit Charts

Learn how today it is the Internet, data integration, and tailored recommendations that stage the music scene for the new Bob Dylans.

Open Data Innovation? Open Your Data And See It Happen

Learn how open data trend-setting governments and local authorities are opening up data sets and actively encouraging innovation.

Linked Data Innovation – A Key To Foster Business Growth

Learn how freely available and machine-readable Linked Open Data enriches organizations’ data and helps them discover new links and insights.

Linked Data Approach to Smart Insurance Analytics

Read about how Linked Data and semantic technology can enrich data and pave the way to advanced analytics.

Linked Data Paths To A Smart Tourism Journey

Read about how the tourism industry can benefit from Linked Data and big data analytics for wiser investments and higher profits.

Linked Data Pathways To Wisdom

Learn about the linked data pathways to wisdom through ‘who’, ‘what’, ‘when’, ‘where’, ‘why’, ‘how to’ and, finally, ‘what is best’.

Taking Semantic Web to its Next Level with Cognitive Computing

Learn about the new age of cognitive computing and integrating its concepts into two decades of semantic web growth.

Open Data Play in Sports Journalism And EURO 2016

Read about how open data gives those modern-day Sherlocks the bases of their stories.

Open Data Sources for Empowering Smart Analytics

Learn how Open Data and how more businesses use data analytics to gain insights, predict trends and make data-driven decisions.

Journalism in the Age of Open Data

Learn how governments and authorities can start relying more on journalism to promote the use of open data and its social and economic value.

Building Linked Data Bridges To Fish In Data Lakes

Learn how enterprises can build bridges to extracting more powerful and more relevant insights from their Big Data analytics.

Open Data Use Cases In Five Cities

Learn how London, Chicago, New York, Amsterdam and Sofia deal with open data and extract social and business value from databases.

ODI Summit Take Out: Open Data To Be Considered Infrastructure

Learn about The ODI’s second Summit with prominent speakers such as Sir Tim Berners-Lee, Martha Lane Fox and Sir Nigel Shadbolt.

Highlights from the “Mining Electronic Health Records for Insights” Webinar

Read some of the Q&As from our webinar “Mining Electronic Health Records for Insights”.

Highlights from ISWC 2015 – Day Three

The 14th International SemanticWeb Conference started three days ago and Ontotext has been its most prominent sponsor for 13 years in a row.

Highlights from ISWC 2015 – Day Two

The 14th International SemanticWeb Conference started three days ago and Ontotext has been its most prominent sponsor for 13 years in a row.

Overcoming the Next Hurdle in the Digital Healthcare Revolution: EHR Semantic Interoperability

Learn how NLP techniques can process large volumes of clinical text while automatically encoding clinical information in a structured form.

Highlights from ISWC 2015 – Day One

The 14th International SemanticWeb Conference started three days ago and Ontotext has been its most prominent sponsor for 13 years in a row.

Text Mining to Triplestores – The Full Semantic Circle

Read about the unique blend of technology offered by Ontotext – coupling text mining and RDF triplestores.

Text Mining & Graph Databases – Two Technologies that Work Well Together

Learn how connecting text mining to a graph database like GraphDB can help you improve your decision making.

Semantic Publishing – Relevant Recommendations Create a Unique User Experience

Learn how semantic publishing can personalize user experience by delivering contextual content based on NLP, search history, user profiles and semantically enriched data.

Why are graph databases hot? Because they tell a story…

Learn how graph databases like GraphDB allow you to connect the dots and to tell a story.