SEMANTiCS 2018: An Interview with Ontotext’s CEO Atanas Kiryakov

September 10, 2018 10 mins. read Ontotext Interviews

The SEMANTiCS conference is the leading European conference on Semantic Technologies and AI since 2005. It focuses on knowledge sharing and networking at the cross-section of research and business. This talk with Ontotext’s CEO Atanas Kiryakov was taken before this year’s event on September 10-13 in Vienna and was was published originally on September 07 at www.semantics.cc . Learn about the areas Ontotext works in, our signature solution GraphDB, domain knowledge modeling and his talk at SEMANTiCS.

SEMANTiCS 2018: What are the focal areas of your company’s business activities?

Atanas Kiryakov: We are best known as the developer of GraphDB – a leading semantic database engine. Our second major business line is the development of enterprise knowledge management solutions that involve big knowledge graphs.

We also have a third growing business line: managed services. Many of our customers are happy to transfer to us the full responsibility for operating the IT systems that we have developed for them. Often, this is more efficient than providing support to the customer’s own IT team. Ontotext’s operations team directly executes service level agreements determined by the business requirements for availability, response time, regular updates, data quality, text mining accuracy, etc.

SEMANTiCS 2018: What kind of solutions are you developing with knowledge graphs?

Atanas Kiryakov: At a technology level, most of our solutions represent some sort of enterprise content management or data management. The fancy parts of it are the analytics, visualizations and insights. But before that there is the heavy lifting – data cleaning and integration and information extraction from text.

At the end of the day, all big enterprises struggle to get better access to their information assets – typically scattered across different systems. Be it for decision-making, sales, customer support or other purposes. In some businesses, risk management and regulatory compliance are of tremendous importance. For instance, banks use our technology to deal with anti-money-laundering and regulatory reporting. Pharma companies apply it to help them handle faster and better inquiries from agencies like FDA about side effects of drugs.

The biggest global players are the early adopters of such solutions based on semantic technology. They come to us when they have tried the best mainstream data management and content management technologies and they have recognized that they need semantics to further increase their efficiency and competitiveness. I believe that this technology will soon become accessible to a much broader set of businesses. That’s what Ontotext is working for – to democratize semantic technology.

SEMANTiCS 2018: In which sectors do you see the biggest demand for semantic technology?

Atanas Kiryakov: We see plenty – from financial services to Pharma and Government. But let me mention two that we have been focusing on recently: Publishing and Market intelligence.

One typical business application is content packaging and re-use for publishers. Imagine you are a media like BBC, a business newspaper like FT or a scientific publisher like Elsevier. They all sit on top of enormous volumes of content, but find it hard to compete against providers of free content. To make this worse, web platforms such as Facebook and Google take away substantial part of their profit. It is a matter of survival for publishers to make their content easier to discover, to better engage their readers with personalized recommendations or to sell tailor-made data feeds to businesses. This is what Ontotext’s solutions do for them.

Another business application is data enrichment and linking for Market intelligence. Imagine you are a business information agency that wants to build a company profiling service for Latin America. Company data providers don’t offer good coverage for this region – they provide decent information for companies with revenues below $50M only in the developed markets. Here, Ontotext offers a solution where we integrate the available company data from different sources into a big knowledge graph and use this graph to analyze local business news to extract more company information. This new information is precious. It gives such agencies a competitive edge. We enrich the knowledge graph with it and this is the final product – a unique body of knowledge about a specific market.

SEMANTiCS 2018: What is special in the way you use knowledge graphs in such solutions?

Atanas Kiryakov: The Ontotext Platform is a product that builds on top of our semantic database engine. Its key capability is text mining using big knowledge graphs. The most basic service is semantic tagging – one can also call it concept extraction, named entity recognition or semantic annotation. The result is rich metadata that interlinks documents or other unstructured content with the big knowledge graph. This semantic metadata boosts the performance of practically every content management activity such as search, exploration, classification, recommendation, etc.

Our knowledge graphs provide a rich global context about the corresponding domain, be it international business, oil and gas, pharma or the WW2 Holocaust. We build domain-specific graphs that combine big volumes of open data with commercially available datasets to provide a global view on the domain. Then, on top of them we layer text mining pipelines tuned to use these knowledge graphs and in this way achieve maximum accuracy for documents in this domain. We call this combination of a knowledge graph, text mining and other analytics tuned for the domain – a domain knowledge model.

In most of the specific projects, we combine global domain knowledge graphs with the proprietary data of the enterprise. We also use ontologies to provide specific views, generalizations, reclassifications and abstractions on top of the general-purpose schemata. Each enterprise receives a knowledge graph that benefits from rich global knowledge, but uses its precious business wisdom to interpret and analyze the data.

SEMANTiCS 2018: This sounds like an ambitious vision, but what are the technological challenges when you try to implement it?

Atanas Kiryakov: There are three big challenges: merging data from various sources; recognizing concepts and entities in text; and keeping the knowledge graph up-to-date with updates from the different sources.

Matching concepts and entities across data sources and recognizing their mentions in texts require the disambiguation of their meaning. For instance, to be able to distinguish between Paris, the capital of France, and Paris, Texas or Paris Hilton. This is something that comes easy to people, but computers cannot do on their own, because an average graduate has a level of awareness about a wide set of entities and concepts that computers do not.

Therefore, we build big knowledge graphs and apply cognitive analytics to them to provide entity awareness – semantic fingerprints derived from rich entity descriptions. For instance, Ontotext’s Company Graph provides entity awareness about all locations on Earth as well as the most popular companies and people. We have also built such a knowledge graph in Life Sciences and Healthcare.

SEMANTiCS 2018: What can we expect from the next version of GraphDB?

Atanas Kiryakov: The next version will be released at end of September. Its key new features are reconciliation and semantic vectors.

Reconciliation makes it easier for the users to interlink their data with an existing knowledge graph. One scenario is to interlink the data between two proprietary sources, using a proprietary reconciliation service. Another one is to use a public service to match your entities to DBpedia, Wikidata, Geonames or another public data source. This is essential for enabling data architects to easily benefit from the links in the linked data.

Semantic vectors allow one to use statistical techniques like embeddings on top of RDF graphs. This is where mainstream semantic technology meets the modern machine learning-based AI techniques. We are planning to add more of this to GraphDB in the near future.

The newest version will include a major performance improvement: small transactions on big repositories will be much quicker. We have also implemented faster SPARQL federation between two repositories in one and the same GraphDB instance. This enables scenarios where a single database instance manages data with different ownership, access rights and update cycles in different repositories, but one can still use them efficiently via federation. This is a big deal for multi-tenant cloud deployments.

There are also several new capabilities that would help operations teams and improve GraphDB’s exploitation in big enterprises. You will hear about them soon.

SEMANTiCS 2018: What is the USP of GraphDB?

Atanas Kiryakov: GraphDB is the best graph database for master data and metadata management. When it comes to such applications, enterprises prefer RDF-based engines to those based on Property graphs for an obvious reason – standard compliance. It is also important that RDF is designed for linking and merging data developed without centralized control – which is the case of the data silos in large organizations. Data diversity within a single organization with 200 thousand employees is bigger than the diversity across the few thousand linked open data datasets we see on the LOD bubble diagram.

GraphDB is designed from day 1 to deal with very big knowledge graphs – the global domain knowledge graphs that I already mentioned. Since 2004, it has been optimized to be able to index very big volumes of metadata and to efficiently serve hybrid queries combining structured constraints with full-text search, inference and graph analytics. We don’t have real competitors for such scenarios. You either have an engine that is designed for this or you get very awkward performance. The later happens, for instance, when you implement RDF and SPARQL support on top of a document database. It works sort of OK when dealing with ontologies of hundreds of classes or vocabularies with thousands of terms, but falls apart when challenged with a knowledge graph of billions of facts.

SEMANTiCS 2018: This is not your first time at SEMANTiCS Conference. Are there some stories that you associate with SEMANTiCS, some takeaways or leads?

Atanas Kiryakov: Yes, last year we had a great time in Amsterdam. Wonderful opportunities to grab a beer with partner technology vendors like the Semantic Web Company or to get in touch with potential new clients from the industry. There were also plenty of interesting meetings with research people. SEMANTiCS is unique in making a balanced blend of these three audiences.

SEMANTiCS 2018: You will be giving a talk at SEMANTiCS. What will be the topic?

Atanas Kiryakov: The title of my talk is: Analytics on big knowledge graphs deliver entity awareness and help data linking.

I will share our vision on how global domain knowledge graphs can bring intelligence to data integration. And also how this enables decision-making based on both global data and proprietary knowledge.

I will use GraphDB to demonstrate analytics on this knowledge graph of 2 billion triples. This is our Company Graph, which combines several data sources and interlinks their entities to more than 1 million news articles. The demonstration includes several cognitive capabilities: importance ranking of nodes, based on graph centrality; popularity ranking, based on news mentions of the company and its subsidiaries; retrieval of similar nodes in a knowledge graph; and determining distinguishing features of entity.

If you liked what you’ve read so far, you can also check out the presentation for the event.

Article's content

In Ontotext Interviews, we talk to colleagues, partners, customers and leaders in next generation technology trends and standards. We explore topics about semantic technology, enterprise knowledge graph technology, semantic database engines, artificial intelligence systems and other solutions for addressing enterprise data management requirements across various industry verticals. By adding the dimension of human opinion and experience to these complex subject matter, we hope to deepen the understanding and appreciation of such technologies.

AI-powered Solutions to Personalized Healthcare Using Knowledge Graphs: An Interview with Remzi Celebi

Read about our interview with Remzi Celebi, technical co-coordinator for the AIDAVA project, about how Artificial Intelligence, data curation automation and knowledge graphs are used to give patients more control of their health data.

Next-Gen Graph Technology: A CDO Matters Podcast with Ontotext’s CMO Doug Kimball

Read this is an abbreviated version of CDO Matters Episode 26 where Malcolm Hawker talks with Doug Kimball about knowledge graphs, enterprise data challenges, ChatGPT, data fabric, and more

Ontotext’s Semantic Approach Towards LLM, Better Data and Content Management: An Interview with Doug Kimball and Atanas Kiryakov

Read this interview our CMO and our CEO talking about how enterprises can benefit from AI, LLM, knowledge graphs, semantic technology and data fabric and much more

Semantic Technologies and Knowledge Graphs in Healthcare: An Interview with Isabelle de Zegher

Ontotext talks to Isabelle de Zegher, clinical co-coordinator for the AIDAVA project and founder of b!loba discuss the added value of semantic technologies and knowledge graphs in the Healthcare domain

Semantic Technology Helps Manage Any Industry’s Complex Knowledge: An Interview with Ontotext’s CEO Atanas Kiryakov

SeeNews: Business Intelligence for Southeast Europe talks to Ontotext’s CEO Atanas Kiryakov about the latest developments in semantic technology and graph technology as well as GraphDB

RDF-star Implementation in GraphDB and How Synaptica Used It Within Graphite for Access Control

Ontotext talks to Gene Loh, Director Software Development at Synaptica, and Vassil Momtchev, Ontotext CTO, about the RDF-star extension to the RDF graph data model, its value and how it was implemented in Ontotext’s GraphDB and used in Synaptica’s Graphite.

AI, the Power of Knowledge and the Future Ahead: An Interview with Head of Ontotext’s R&I Milena Yankova

Economy.bg talks to Milena Yankova about how machines can and do help people to be more efficient and more creative.

SEMANTiCS 2018: An Interview with Ontotext’s CEO Atanas Kiryakov

SEMANTiCS talks to Ontotext’s CEO Atanas Kiryakov about the areas Ontotext works in, our signature solution GraphDB, domain knowledge modeling and his upcoming talk.

Hybrid Intelligence, Computer Understanding and the Hype about AI: An Interview with Robert Dale

Teodora Petkova talks to prof. Robert Dale of the Language Technology Group about hybrid intelligence, computer understanding and the hype about AI.

SEMANTiCS 2017: An Interview with Ontotext’s CEO Atanas Kiryakov

Learn about Ontotext beginnings and its vision for Linked Data and semantic technology in this interview with Ontotext’s CEO Atanas Kiryakov taken before Semantics 2017.

Cognitive Technologies and Their Applications: An Interview with Ontotext’s CEO Atanas Kiryakov

Bloomberg TV Bulgaria talks to Ontotext’s CEO Atanas Kiryakov about cognitive technologies and some perspectives on the IT sector and its development.

Graph Databases and RDF: It’s a Family Affair: A ZDNet Interview with Ontotext CTO Vassil Momtchev

George Anadiotis discusses the RDF graph data mode with Ontotext CTO Vassil Momtchev in this engaging ZDNet interview.

Fake News, Media Content Filtering and Data Analysis in the Context of Semantic Technology: An Interview with Ontotext’s CEO Atanas Kiryakov

Bloomberg TV talkes to Ontotext’s CEO Atanas Kiryakov about fake news, human behavior analysis and prediction, filtering and serving content with semantic technology and more.

Linking Data Is the Magic that Makes Things Interesting: An Interview with Ontotext’s CEO Atanas Kiryakov

The Bulgarian National Radio talks to Ontotext’s CEO Atanas Kiryakov about what it takes to be one of the 100 challengers from CEE and more.

Semantic Technology to Help More and More Publishers Stay Ahead of the Game: An interview with Ontotext’s CEO Atanas Kiryakov

Ontotext’s CEO Kiryakov talks to Bloomberg TV Bulgaria about Ontotext’s data management products that help enterprises make sense of their data.

Vassil Momtchev Talks Insights with the Bloor Group

Eric Kavanagh of The Bloor Group interviews Ontotext’s CTO Vassil Momtchev on Semantic Technology and a wide range of other topics.

Ontotex CEO, Atanas Kiryakov in “Thought Leaders in Big Data Series”

One Million by One Million spoke with Ontotext’s CEO Atanas Kiryakov for their “Thought Leaders in Big Data Series”. Dive in!